Environmental Laboratory
Monitoring Methane on the go has Never Been Easier with the LGR MGGA
Jul 05 2017
Per molecule, methane has a global warming potential 28 times greater than CO2 when considered over a 100-year time horizon, according to a 2014 report by the Intergovernmental Panel on Climate Change (IPCC). When considered over a shorter timeframe of 20 years, the GWP increases to 84 times that of CO2. Methane eventually breaks down in the atmosphere to yield CO2 and water vapour, both greenhouse gases in their own right.
Significant amounts of methane are emitted naturally by sources such as animals, bacteria, and forest fires. More recently, anthropogenic emissions from fracking, waste processing, and leaks in natural gas infrastructure have become another significant contributor to the global methane budget, and the current global average concentration of 1.8 ppm is 250% greater than the pre-industrial era average. With the ever increasing demand for natural gas, emissions from industrial sources are likely to increase further in the near future.
In light of methane’s significant contribution to climate change, measuring it accurately and detecting leaks at the source is more important than ever. A wide variety of equipment exists to measure methane, ranging from highly accurate laboratory instruments such as gas chromatographs, to portable, indicative electronic sensors. One of the major difficulties in monitoring methane emissions arises from the need for fast, highly precise measurements of methane in the field, for instance, in fence line monitoring. Simple semiconductor and infrared based detectors often lack the precision required for these measurements, but laboratory instruments such as GCs are too cumbersome to use on site.
ET is now able to offer a cutting edge, portable methane analyser with a precision of just 3 parts-per-billion to fill this niche – the Los Gatos Research Microportable Greenhouse Gas Analyser (LGR MGGA). The MGGA uses LGR’s patented Off-Axis ICOS detection method, which provides exceptional precision and selectivity with minimal maintenance, and no need for regular recalibrations. In addition to this the MGGA requires no ‘Carrier gases’ or Zero Air unlike FID based instruments. The MGGA, which also measures CO2 and H2O vapour, is built into a rugged, crushproof pelican case with the option of a shoulder strap for easy carrying. There is also an optional telescopic wand for Leak Detection Activities.
With an ultra-fast response, a weight of just 6kg, an internal battery, and the ability to control the instrument using nothing more than a tablet or mobile phone, the MGGA is an ideal tool for leak detection applications. Other applications include; Compliance Monitoring, Air Quality Studies & Soil and Vegetation Flux Studies.
In addition to the 6kg MGGA, ET can offer several alternative methane monitoring solutions from Los Gatos Research, including the popular 15kg Ultraportable Greenhouse Gas Analyser (UGGA), the rack-mounted ‘fast’ greenhouse gas analyser, and alternative configurations capable of measuring CO or NH3, in addition to CH4, CO2, and H2O. Analysers are also available to measure isotopologues of methane and carbon dioxide, for specialist research applications.
Digital Edition
AET 28.4 Oct/Nov 2024
November 2024
Gas Detection - Go from lagging to leading: why investment in gas detection makes sense Air Monitoring - Swirl and vortex meters will aid green hydrogen production - Beyond the Stack: Emi...
View all digital editions
Events
Nov 26 2024 Paris, France
Nov 27 2024 Istanbul, Turkey
H2O Accadueo International Water Exhibition
Nov 27 2024 Bari, Italy
Biogas Convention & Trade Fair 2024
Nov 27 2024 Hanover, Germany
Dec 02 2024 London, UK