Methane emissions from contrasting production regions within Alberta, Canada: Implications under incoming federal methane regulations


Date: 09:00:00 - May 22 2019
Speakers: David Risk

Aggressive reductions of oil and gas sector methane, a potent greenhouse gas, have been proposed in Canada. Few large-scale measurement studies have been conducted to confirm a baseline. This study used a vehicle-based gas monitoring system to measure fugitive and vented gas emissions across Lloydminster (heavy oil), Peace River (heavy oil/bitumen), and Medicine Hat (conventional gas) developments in Alberta, Canada. Four gases (CO2, CH4, H2S, C2H6), and isotopic 13CCH4 were recorded in real-time at 1 Hz over a six-week field campaign. We sampled 1,299 well pads, containing 2,670 unique wells and facilities, in triplicate. Geochemical emission signatures of fossil fuel-sourced plumes were identified and attributed to nearby, upwind oil and gas well pads, and a point-source gaussian plume dispersion model was used to quantify emissions rates. Our analysis focused exclusively on well pads where emissions were detected >50% of the time when sampled downwind. Emission occurrences and rates were highest in Lloydminster, where 40.8% of sampled well pads were estimated to be emitting methane-rich gas above our minimum detection limits (m = 9.73 m3d1). Of the well pads we found to be persistently emitting in Lloydminster, an estimated 40.2% (95% CI: 32.2%-49.4%) emitted above the venting threshold in which emissions mitigation under federal regulations would be required. As a result of measured emissions being larger than those reported in government inventories, this study suggests government estimates of infrastruc- ture affected by incoming regulations may be conservative. Comparing emission intensities with available Canadian-based research suggests good general agreement between studies, regardless of the measure- ment methodology used for detection and quantification. This study also demonstrates the effectiveness in applying a gaussian dispersion model to continuous mobile-sourced emissions data as a first-order leak detection and repair screening methodology for meeting regulatory compliance.
 

Free to watch

Sessions are free to watch. Please login to view this session or create an account.



Speakers


David Risk
David Risk (St. Francis Xavier University)

David Risk is an Associate Professor of Earth Sciences at St. Francis Xavier University in Nova Scotia, Canada. He works closely with industry and regulators to develop gas measurement approaches or programs, and to undertake large-scale studies of methane emission patterns in the North American energy sector.


Digital Edition

AET 28.2 April/May 2024

May 2024

Business News - Teledyne Marine expands with the acquisition of Valeport - Signal partners with gas analysis experts in Korea Air Monitoring - Continuous Fine Particulate Emission Monitor...

View all digital editions

Events

The World Biogas Expo 2024

Jul 10 2024 Birmingham, UK

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

Australasian Waste & Recycling Expo

Jul 24 2024 Sydney, Australia

Chemical Indonesia

Jul 30 2024 Jakarta, Indonesia

China Energy Summit & Exhibition

Jul 31 2024 Beijing, China

View all events