• Research Award Given for Establishing Traceability for Measurements of Mercury Vapour in Air

    Fuel for thought

    Research Award Given for Establishing Traceability for Measurements of Mercury Vapour in Air

    The following research has recently been published in The Analyst (2008, 133,946-953), Britain`s Royal Society of Chemistry`s high-impact analytical science journal. This work has been recognised as one of the three most significant research papers in environmental science by CITAC (the Cooperation on International Traceability in Analytical Chemistry) and is one of the recipients of the `2008 CITAC Award for the Most Important Paper on Metrology in Chemistry`. This award is made to “highlight remarkable papers in the field of Metrology in Chemistry because of their important scientific content.”

    Mercury is a highly toxic and persistent pollutant found in ambient, indoor and workplace air. It is released into the environment from sources such as coal-burning power plants, crematoria and waste treatment processes.

    The vast majority of mercury vapour measurements currently undertaken are ultimately traceable to the vapour pressure of mercury. This is given in the scientific literature by several different empirical equations, but the agreement between these is not good, with data from different equations sometimes differing by 5% or more. There is also no current international agreement on which is the best equation to use.

    In order to solve this important measurement issue, scientists at UK based NPL (National Physical Laboratory) have collaborated with P S Analytical (UK) to link mercury vapour measurements directly to standards of mass thereby establishing traceability for these measurements to the SI system of units. These measurements are therefore no longer dependent on mercury vapour empirical equations and, crucially, measurements carried out by different laboratories at different times using different equipment, can be compared with confidence.

    These outputs from the research are of great importance to the environmental chemistry community, particularly those engaged in air quality determination, and have many applications. For example, the traceability can be applied to the UK heavy metals monitoring network, which is operated on behalf of Defra by NPL (see Environmental Measures Issue 4 - Winter 2007) and requires the measurement of the ambient mercury vapour concentration at 15 monitoring sites across the UK. Other applications include the measurement of mercury vapour in indoor and workplace air - this is a particularly important issue as indoor levels of mercury are generally greater than those outdoors, and typical exposure times are longer.

    This research gives the UK an advantage in preparing for the introduction of new European ambient air legislation. For example, work is on-going to bring in a standardised automatic method for the analysis of mercury vapour in ambient air as a possible replacement for the manual method in use in the heavy metals monitoring network.

    Digital Edition

    PIN 26.1 Feb/Mar 2025

    March 2025

    Analytical Instrumentation - Elemental Analysis for Quality and Process Control at Refineries, for Lubricants and Wear Metals in Engine Oils - Synthetic Lubricants: New Developments - Scaling...

    View all digital editions

    Events

    WPC 2025

    Mar 17 2025 Houston, TX, USA

    NGVS 2025

    Mar 18 2025 Beijing, China

    Water Philippines

    Mar 19 2025 Manila, Philippines

    Laborama 2025

    Mar 20 2025 Brussels, Belgium

    FLOWEXPO

    Mar 20 2025 Guangzhou, China

    View all events

    Congratulations...
    We will send you the latest eBulletin as soon as its ready..
    Sign up to PIN for FREE.
    Register and get the PIN eBulletin, a Monthly email packed with the latest instruments and applications from the petroleum related industry.