Environmental Laboratory
Advance your Cell Toxicity Research - a Single Cell at a Time
Jan 10 2018
Have you ever imagined being able to quantitatively measure the metal content in individual cells, unveiling new capabilities to study intrinsic metals and the uptake of dissolved (ionic) and nanoparticulate metals into cells? PerkinElmer’s new Single Cell ICP-MS technique focuses on individual cells themselves, allowing researchers to measure nanoparticles and metals in individual cells.
Say Good-bye to time-consuming traditional methods with long instrument analysis and sample preparation time and welcome the ability to rapidly measure the elemental concentration of individual cells, as well as the distribution in concentration throughout the cell population in your life science applications focusing on uptake rates, bioavailability, and bioaccumulation for drug delivery and toxicity assessment.
If you would like to get an insight into understanding the uptake and elimination mechanisms of metals and/or metal-containing nanoparticles by individual cells, the mechanisms of interactions between metal-containing drug and cells, and the distribution of nutrients among a population of cells, then you should take a close look at PerkinElmer’s unique Single Cell ICP-MS technique that measures:
- Mass of metal per cell
- Mass distribution within a cell population
- Concentration of cells containing metal or nanoparticles
- Number of nanoparticles per cell
Click here to discover more.
Digital Edition
AET 28.4 Oct/Nov 2024
November 2024
Gas Detection - Go from lagging to leading: why investment in gas detection makes sense Air Monitoring - Swirl and vortex meters will aid green hydrogen production - Beyond the Stack: Emi...
View all digital editions
Events
Nov 26 2024 Paris, France
Nov 27 2024 Istanbul, Turkey
H2O Accadueo International Water Exhibition
Nov 27 2024 Bari, Italy
Biogas Convention & Trade Fair 2024
Nov 27 2024 Hanover, Germany
Dec 02 2024 London, UK